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Abstract  

The primary purpose of oil sands mine planning and waste management is to provide ore from the mine pit to the processing 

plant while containing the tailings in an efficient manner in-pit. Incorporating waste management in the mine plan is essential 

in maximizing the economic potential of the mineral resource and minimizing waste management cost. However, spatial 

variability such as grade uncertainty results in ore tonnage variations, which leads to variations in the quantity of waste to be 

managed. If grade uncertainty is not considered in oil sands mine planning, there may be excess waste than the waste 

management plan can handle or an over-design of a waste management system to handle less waste than planned. Both 

scenarios end up with lost opportunities. Conventional approaches to optimizing open pit mine production schedules are based 

on a single estimated orebody model which does not account for grade uncertainty. Grade uncertainties has profound impact 

on Net Present Value (NPV) of the mining project as it may induce large differences between the actual and expected 

production targets. Thus, the aim of this research is to develop an integrated oil sands mine planning optimization framework 

using Stochastic Mixed Integer Linear Programming (SMILP) to integrate the related domains of bitumen grade uncertainty 

and waste management. Sequential Gaussian Simulation (SGS) is employed to quantitatively model the spatial variability of 

bitumen grade in the oil sands deposit. Multiple simulated orebody models are used as inputs for the SMILP model to generate 

optimal results in the presence of grade uncertainty.  

Keywords Oil sands mine planning, Production scheduling optimization, Stochastic mathematical 

programming, Sequential Gaussian Simulation, Waste management, Grade uncertainty   

1 Introduction  

 Mine planning defines the source, destination, and 

sequence of extraction of ore and waste over the mine 

life. The result of mine planning is a production 

schedule that defines the tonnage of ore and waste and 

the input grade to the plant in each period of time. This 

production schedule has a significant influence on the 

economics of the mine due to time value of money. 

Improving production scheduling is essential as the 

mining industry considers more marginal resources. 

The natural complexity of mineral deposits makes 

mine planning more difficult. Moreover, the 

production schedule must follow physical and 

technical constraints, and meet the target capacity of 

the processing plant. Optimization algorithms are 

being applied in mine planning to maximize the 

overall profit of the project and minimize deviations 

from production targets. In traditional long-term mine 

planning, a geological block model is used as the main 

input to maximize the net present value (NPV) of the 

project. The geological block model is a quantitative 

definition of the available resource. Data from drill 

holes are used to construct the block model using 

geostatistical techniques. 

Uncertainty in the generated block model data is 

inevitable with relatively widely spaced drill holes. 

The optimality of the open-pit production schedule 

will be affected by this uncertainty. Recent research 

initiatives have attempted to consider the effect of 

grade uncertainty on production schedules using 

mathematical programming. Mathematical 

programming formulations have the advantage of 

generating production schedules with a measure of the 

extent of optimality (Johnson, 1969; Gershon, 1983; 

Dagdelen, 1985; Dagdelen and Johnson, 1986; Akaike 

and Dagdelen, 1999; Caccetta and Hill, 2003). A 

major challenge in open-pit production scheduling 
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with mathematical programming is the size of the 

optimization problem. The mathematical 

programming formulation of realistic long-term open-

pit production schedules often exceeds the capacity of 

current hardware and optimization software 

(Badiozamani and Askari-Nasab, 2014). In this 

research, grade uncertainty is taken into account in an 

integrated long-term production scheduling and waste 

management. A case study based on oil sands deposit 

was evaluated and the results analyzed in this paper. 

A geological block model was first constructed for the 

oil sands deposit using geostatistical techniques such 

as ordinary kriging (OK) and sequential gaussian 

simulation (SGS). Thereafter, using the economic 

block model and production scheduling parameters, 

the project net present values (NPV) were determined 

and the scheduled results compared for the OK and 

SGS block models. The advantages of utilizing SGS 

models over the conventional OK models in grade 

estimation and mine planning are highlighted.  

The rest of the paper is organized as follows; Section 

2 describes the general process of oil sands mining and 

material handling strategies.  Section 3 outlines the 

problem definition of this research Section 4 

documents the research methodology that was 

followed and Section 5 discusses the mathematical 

programming formulation based on a Stochastic 

Mixed Integer Linear Programming (SMILP) 

framework for integrated oil sands mine planning and 

waste management. A case study is implemented and 

the results discussed in Section 6. The paper concludes 

in Section 7.  

 

2 Oil Sands Mining  

A typical oil sand mining system comprises of the 

removal of overburden material which is then 

preceded by mining the McMurray Formation 

containing the oil sands deposit. The first stage in any 

typical oil sands mining operation is to remove 

approximately 30 m of overburden material before the 

oil sand ore can be extracted. Each oil sands mining 

block is made up of ore, overburden (OB) and 

interburden (IB) dyke material, and waste.  During 

extraction, the mined-out areas can be used as in-pit 

tailings storage areas as mining progresses in the 

specified direction and in-pit tailings dyke footprints 

are released. OB and IB dyke materials are used to 

construct facilities such as tailings dykes. These dykes 

are usually compacted by driving heavy trucks over 

them. Any other material that is not extracted as ore or 

dyke material, are sent to the waste dump. Ore 

material is hauled to the processing plant where it is 

crushed, slurried with warm process water and 

pumped to the extraction plant. (Mikula et al., 1998; 

Chalaturnyk et al., 2002; Soane et al., 2010). The 

unsteady movement of oil sands ore during hydro 

transport breaks the ore into individual particles that 

are needed for separation in bitumen extraction. 

Process aids, dispersing agents and small air bubbles 

are then added before the ore reaches extraction stage. 

The oil sands ore is then mixed with water in a 

processing tower to create an oil sand slurry, which is 

then pumped to a central extraction plant where 

bitumen is extracted from the ore. After ore extraction, 

two main types of tailings are produced; (1) fine 

tailings and (2) coarse tailings. The fine tailings form 

the slurry which needs to be contained in the tailings 

facility.  

According to the Alberta Energy Regulator (AER) 

(Alberta Energy Regulator, 2016), the minimum 

bitumen content of the oil sands material that will be 

classified as ore is 7 percent by weight of bitumen. A 

schematic view of the current oil sands mining 

material handling layout for long term mine planning 

could be seen in Figure 1. 

 
Figure 1 Oil sands mining material handling layout 

(modified after Badiozamani and Askari-Nasab, 2014) 

 

3 Problem Definition  

Conventional approaches to optimizing open pit mine 

production schedules are based on a single estimated 

orebody model which does not account for grade 

uncertainty. Grade uncertainties have a profound 

impact on the NPV and waste management strategy of 

the mining project as it may result in large differences 

between the actual and expected production targets, 

especially in the early years of mine life. Most methods 

developed to solve the mine production scheduling 

problem either ignore grade uncertainty or do not 

evaluate its impact on the waste management strategy.  

The production scheduling of open-pit mines is an 

intricate, complex and difficult problem to address due 
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to the large-scale optimization and the unavailability 

of a truly optimal net present value (NPV) solution. 

The complexity is increased by uncertainties due to the 

sparse variability of geological data. Godoy and 

Dimitrakopoulos (2004) classified the uncertainties 

involved in mine planning as (1) in-situ grade 

uncertainty and material type distribution; (2) 

technical mining specifications uncertainties such as 

extraction capacities and pit slope considerations; and 

(3) economic uncertainties including capital and 

operating costs. Osanloo et al. (2008) mentions several 

authors who consider the uncertainty of ore grade in 

long term production planning. They report that grade 

uncertainties result in metal accounting challenges 

since the metal content of the blocks are not known 

precisely at the time decisions are made but inferred 

from limited drilling information.  

In addition to the impact of grade uncertainty on the 

long term mine plan, oil sands mining is increasingly 

becoming challenging as the public and lawmakers 

continue to put pressure on their waste management 

practices. Together with the limitations in lease areas, 

it has become necessary to look into effective and 

efficient waste disposal planning systems. These 

systems should be well integrated into the long term 

mine plan in an optimization framework that creates 

value and a sustainable operation. In oil sands 

operations, the pit phase mining occurs 

simultaneously with the construction of in-pit dykes in 

the mined-out areas of the pit and ex-pit dykes in 

designated areas outside the pit. These dykes are 

constructed to hold tailings that are produced during 

the processing of the oil sands ore. The materials used 

in constructing these dykes come from the oil sands 

mining operation. The dyke materials are made up of 

overburden (OB), interburden (IB) and tailings coarse 

sand (TCS). Dykes with different configurations are 

required during the construction. The material sent to 

the processing plant (ore) must have a specified 

minimum amount of bitumen and percentage fines, 

while material sent for dyke construction (dyke 

material) must meet the fines requirement for the dyke 

construction location. Any material that does not 

qualify as ore or dyke material is sent to the waste 

dump. A schematic representation of the problem 

definition for oil sands production mine planning and 

waste management could be seen in Figure 2

 

Figure 2 Schematic representation of the problem 

definition for oil sands production planning and 

waste management (modified after Ben-Awuah and 

Askari-Nasab,  2013) 

 
In formulating an efficient model to incorporate 

grade uncertainties and waste management into oil 

sands mine planning, the research objectives can be 

characterized in three key areas: 

a) Developing a risk-based integrated oil sands 

mine planning and waste management 

optimization framework using a Stochastic 

Mixed Integer Linear Programming (SMILP) 

model that will incorporate the related domains 

of bitumen grade uncertainty and robust oil sands 

waste management planning.  

 

b) Determining the order and time of extraction 

of ore, dyke material, and waste to be removed 

from a predefined final pit limit over the mine 

life that maximizes the Net Present Value (NPV) 

of the operation. 

 

c) Evaluating the risk profile associated with 

the mine plan and it impact on waste 

management.  

4 Research Methodology  

Grade uncertainty in a long-term production plan has 

been reported to affect the NPV of a mining project 

due to the differences between the actual and 

expected production targets especially in the early 

years of production (Osanloo et al., 2008). Hence, to 

address the issue of grade uncertainty, instead of 

using a single estimated block model for production 

scheduling, twenty simulated realizations, that are 

representative of grade variability were used as input 

to the SMILP model. A conventional model which 

was based on Ordinary Kriging estimation was 
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considered as the base case model. Both models 

including the E-type model were then compared to 

demonstrate the impact of grade uncertainty on the 

integrated mine production scheduling and waste 

management problem.  

The workflow used in this research to generate an oil 

sands production schedule under grade uncertainty 

from the SMILP framework are as follows: 

a) Create an oil sands geological and 

economical block models from the given drill 

hole data sets using GEOVIA GEMCOM 

software 6.7 (Gemcom Software 

International, 2012). The bitumen grades in 

this block model is estimated using Ordinary 

Kriging and serves as the base case model. 

b) Implement geostatistical modelling using 

Sequential Gaussian Simulation (SGS) 

algorithm to map out bitumen ore grade 

uncertainty in the block model. In this step, 

Geostatistical Software Library known as 

GSLIB was used (Deutsch and Journel, 

1998) 

c) Determine the final pit limits using the base 

case block model, the E-type block model, 

and each realization block model using the 

3D LG algorithm in GEOVIA Whittle 

software 4.7. (Gemcom Software 

International, 2012). 

d) Export the blocks contained in the final pit 

limits for the base case model into GEOVIA 

GEMS software and using the pit design 

parameters, design the final pit outlines 

using the final pit limits as guide.   

e) Select all the blocks that are within the 

designed final pit limits for all the 

realizations, E-type and Ordinary Kriging 

block models. Save the selected blocks 

within the final pit limits in ASCI file 

format.  

f) For each case study, define the input 

scheduling parameters in MATLAB to 

formulate the problem. 

g) Implement the developed mathematical 

programming formulations in MATLAB.  

TOMLAB/CPLEX (ILOG, 2017) is used 

as the solver for the defined optimization 

problem  

h) Perform production scheduling optimization 

runs and comparative analysis based on the 

generated results from the OK, E-type and 

SGS block models.  

5 Stochastic Mixed Integer Linear 

Programming (SMILP) Model 

Formulation   

The SMILP optimization framework for generating 

long-term production schedule in the presence of 

grade uncertainty was modeled using multiple 

realizations from Sequential Gaussian Simulation 

(SGS). A parameter known as the Economic Block 

Value (EBV) is calculated for each block in each 

realization. The EBV of a block is the revenue 

generated by selling the final product less all the costs 

involved in extracting and processing the block. The 

mining cost of a block is a function of the distance 

between its location and its final destination. Since the 

long-term production plan is a multi-period 

optimization problem and blocks are extracted in 

different periods, a discount rate is applied to calculate 

the present value of the EBV, revenue and the costs. 

Therefore, the Discounted Economic Block Value 

(DEBV) for the stochastic model is calculated using 

Equation (1). 

, , , , , ,

, , , , ,

u t u t a t u t u t u t

n s n s n n s n s n sd v q p m h                    (1)         

The parameters stated in Equation (2)  to Equation 

(6) are used to calculate the Discounted Economic 

Block Value. These parameters are defined by;  

, , , , , ,

, , , ,

1 1

( )
E E

u t e u e e t e t u e t

n s n s n s n s

e e

v o g r P cs o cp
 

              (2)                                                     

 
, ,( )a t a t

n n n n nq o d i w cm                               (3)                                                                           

, ,

, ,

u t u t

n s n sp d ck                                                   (4)                                                                                

, ,

, ,

u t u t

n s n sm i cb                                                 (5)                                                                               

, ,

, ,

u t u t

n s n sh j ct                                                    (6)                                                                                                

The discounted revenue shown in Equation (2)  is 

the present value of the ore minus the cost of 

processing the ore. The discounted cost of mining all 

the block material as waste is represented by 

Equation (3). 

The extra discounted costs of mining materials such 

as overburden, interburden, and tailings coarse sands 

for the purpose of dyke construction are represented 

by Equation (4) to Equation (6) respectively. The 

notations used in the formulation of the SMILP model 

optimization problem have been classified as indices, 

sets, superscripts, subscripts and decision variables 

follows:  
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Indices 

 1,....,a A       index for possible mining 

locations (pits) 

 1,....,e E  index for the element of interest 

in each block 

 1,....,j J      index for phases (pushbacks) 

 1,....,n N     index for blocks 

 1,....,s S       index for SGS realizations  

 1,....,t T       index for scheduling periods 

 1,....,u U    index for possible destinations 

for materials 

 

Sets  

 1,....,A A      set of all index for possible 

mining locations (pits) in the 

model 

 1,....,J J
      

set of all the phases in the model 

 1,....,N N
    

set of all the blocks in the model 

 1,....,S S
       

set of all equally probable 

orebody realizations 

 1,....,U U
    

set of all the possible destinations 

in the model 

 
 nD J

             
for each block, there is a set 

 nD J which includes all the 

blocks that must be extracted 

prior to mining block n to ensure 

that block n is exposed for mining 

with safe pit slopes, where J is the 

total number of blocks in the set  

 nD J  

 nC L
                

for each block, there is a set  

   n nC L D J  defining the 

immediate predecessor blocks    

that must be extracted prior to 

extraction of the block n, where L 

is the total  number of blocks in 

the set  nC L    

Decision variables  

 0,1t

na           binary integer variable controlling 

the precedence of extraction of 

blocks 
t

na is equal to one if 

extraction of block n has started by 

or in period t, otherwise, it is zero 

,
[0,1]

u t

nx              a continuous variable representing 

the ore portion of block n, that is to 

be to be extracted and processed at 

destination u in period t 

,
[0,1]

a t

ny             a continuous variable representing 

the portion of block n to be mined 

in period t from location a, which 

includes both ore, overburden, 

interburden and waste from the 

associated blocks  

,
[0,1]

u t

nc             a continuous variable representing 

the interburden dyke material   

portion of block n that is to be 

extracted and used for dyke 

construction at destination u in 

period t 

 
,

t

sgdev 
                a continuous variable representing 

the shortage of the grade upper 

bound in   period  t in realization s 

,

t

sgdev 
                 a continuous variable representing 

the surplus of the grade lower 

bound in period  t in realization s 

,

t

sodev 
                  a continuous variable representing 

the shortage of the ore tonnage 

upper bound in period t in 

realization s 

,

t

sodev 
                   a continuous variable representing 

the surplus of the ore tonnage 

lower bound in period  t 

,
[0,1]

u t

ns              a continuous variable representing 

the tailing coarse sand dyke 

material   portion of block n that is 

to be extracted and used for dyke 

construction at destination u in 
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period t 

,
[0,1]

u t

nl             a continuous variable representing 

the overburden dyke material   

portion of block n that is to be 

extracted and used for dyke 

construction at destination u in 

period t  

Parameters 
,u tcb               the cost in present value terms 

per tonne of interburden dyke 

material for dyke construction at 

destination u 

,u tck               the cost in present value terms per 

tonne of overburden dyke 

material for dyke construction at 

destination u. 

,u tct                      the cost in present value terms per 

tonne of tailings coarse sand dyke 

material for dyke construction at 

destination u 
 

the cost in present value terms of 

mining a tonne of waste in period 

t  from location a. 

, ,u e tcp                   
the extra cost in present value 

terms per tonne of ore for mining 

and processing at destination u 

,e tcs                     the selling cost of element e in 

present value terms per unit of 

product. 

,u t

nd
                 

the discounted economic block 

value obtained by extracting 

block n and sending it to 

destination u in period t 

,n sd                       
overburden dyke material tonnage 

in block n 

dgeo                   geological discount rate 

e

kf  
the average percent of fines in ore 

portion of block n 

, ,u t e
f

 
the lower bound on the required 

average fines percent of ore in 

period t at processing destination u 

, ,u t e

f
                

the upper bound on the required 

average fines percent of ore in 

period t at processing destination  u 

d

nf                        
the average percent of fines in 

interburden dyke material portion 

of block n 

, ,u t d
f

               
the lower bound on the required 

average fines percent of 

interburden dyke material in period 

t at dyke construction destination  u 

, ,u t d

f
                 

the upper bound on the required 

average fines percent of 

interburden dyke material in period 

t at dyke construction destination  u 

,

e

n sg
                   

the average grade of element e in 

ore portion of block n in realization 

s 

, ,u t e
g

                    
the lower bound on the required 

average head grade of element e in 

period t at processing destination u 

, ,u t e

g
                   

the upper bound on the required 

average head grade of element e in 

period t at processing destination u 

,

,

u t

n sh
                

the discounted cost of mining 

tailings course sand dyke material 

in block n of realization s and in 

period t for construction at 

destination u 

,n si
                       

the interburden dyke material 

tonnage in block n of realization s 

,n sj                       
the tailings coarse sand dyke 

material tonnage in block n of 

realization s 

,

,

u t

n sm
                   

the extra discounted cost of 

mining all the material in block n 

of realization s and in period t  as 

interburden  dyke material for 

construction at destination u  

,a tcm
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,n so
                    

 the ore tonnage in block n of 

realization s 

,

,

u t

n sp
                   

the extra discounted cost of  

mining all the material in block n 

of realization s and in period t as 

overburden dyke material for 

construction at destination u 

,e tP                   
the price of element e in present 

value terms per unit of product  

t

gpc                    
penalty cost for lower grade 

target deviation in period t 

t

gpc                   
penalty cost for upper grade 

target deviation in period t 

 

t

opc              
penalty cost for lower ore tonnage 

target deviation in period t 

t

opc                   
penalty cost for upper ore tonnage 

target deviation in period t 

,a t

nq
                

the discounted cost  of mining all 

the materials in block n in period 

t as waste from location a 

r                      interest rate  

,u er                  
the proportion of element e 

recovered if it is processed at 

destination u 

,a t

mT
               

lower bound on mining capacity 

in period t  at location a (tonnes) 

,a t

mT
               

upper bound on mining capacity 

in period t  at location a (tonnes)  

,u t

prT
              

lower bound on processing 

capacity in period t  at destination 

u (tonnes) 

,u t

prT
              

upper bound on processing 

capacity in period t  at destination 

u (tonnes) 

,u t

odT
         

lower bound on overburden dyke 

material in period t  at destination 

u (tonnes) 

,u t

odT
             

upper bound on overburden dyke 

material in period t  at destination 

u (tonnes) 

,u t

idT
               

lower bound on interburden dyke 

material in period t  at destination 

u (tonnes) 

  

,u t

idT
              

 upper bound on interburden dyke 

material in period t  at destination 

u (tonnes) 

,u t

tdT
             

lower bound on tailing coarse 

sand dyke material in period t at 

destination u (tonnes) 

,u t

tdT
            

upper bound on tailing coarse 

sand dyke material in period t at 

destination u (tonnes) 

e

nsf
                 

the average ratio of sand-to-fines 

in ore portion of block n 

, ,u t e
sf               

the lower bound on the required 

average sand-to-fines ratio for ore 

in period t at processing 

destination u  

, ,u t e

sf             
the upper bound on the 

required average sand-to-

fines ratio for ore in period t 

at processing destination u 

,n sw

,

,

u t

n sv                 

the waste tonnage in block n 

discounted revenue obtained by 

selling the final product within 

block n of realization s in period t 

if it is sent to destination u, minus 

extra discounted cost of mining all 

the material in block n as ore from 

location a and processing it 

destination u 

5.1. SMILP Model Objective Function  

      The objective function for the SMILP model for 

integrated long term production planning and waste 

management is formulated in three main  parts: 1) 

maximizing the  net present value of the mining 

operation (Equation (7)), 2) minimizing the dyke 

construction cost for the waste management plan 
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(Equation(8)) and 3) minimizing the cost associated 

with deviating from the operating targets, including 

ore grade and ore tonnage deviations (Equations (9) 

and (10)). These control variability of grade targets 

and ore tonnage targets.   

, , ,

,

1 1 1 1 1

1

1( )

u t u t a tS T A U N
n s n n n

t
s t a u n

v x q y
Max

S r    

   
   

          (7) 

, , , , , ,

, , ,

1 1 1 1 1

1

(1 )

u t u t u t u t u t u tS T A U N
n s n n s n n s n

t
s t a u n

p l m c h s
Min

S r    

     
   

  (8)

 
, ,

1 1

1

1

t t t tS T
o s o s

t
s t

pc odev pc odev
Min

S dgeo

   

 

   
 
  

       (9)    

 
, ,

1 1

1

1

t t t tS T
g s g s

t
s t

pc gdev pc gdev
Min

S dgeo

   

 

   
 
  

         (10) 

In the objective function, the SMILP model consists 

of continuous and binary decision variables. Some 

continuous decision variables can take any value 

between 0 and 1 while the binary variable value can 

take either 0 or 1. The binary variable is used to control 

precedence of block extraction while the continuous 

variables such as 
, , , , ,, , , ,u t a t u t u t u t

n n n n nx y l c s  control the 

portion of blocks that is to be extracted. Other 

continuous decision variables like gdev and odev 

provide range of acceptable deviation from ore grade 

and ore tonnages targets that will minimize the 

financial risks of not meeting the production targets 

In Equation (7) there are two decision variables for 

each block n . These decision variables are ,u t

nx  and 

,a t

ny . The first decision variable ,u t

nx represents the 

portion of block n  that is to be processed (if it is ore) 

in period t  while the second decision variable ,a t

ny  

represents the portion of block n  that is to be 

extracted in period t . By using two different decision 

variables for extraction and processing of each block, 

the optimizer decides whether a block should be 

processed or sent to the waste dump. Therefore, cut-

off grade is implemented implicitly in the optimization 

process. By using two decision variables, it is possible 

to generate a schedule that may send low quality ore 

blocks located on upper benches to the waste dump in 

order to gain access to high-quality ore blocks on the 

lower levels. This generates more revenue in early 

periods of the mine life increasing the total profit of 

the project. 

In Equation (8), the aim is to minimize the cost of dyke 

materials extraction for dyke construction in line with 

waste management practices in oil sands mining. 

Continuous decision variables 
, , ,, ,u t u t u t

n n nl c s   are used 

to control the overburden, interburden and tailings 

coarse sand dyke material portions of a block 

extracted for dyke construction. To integrate grade 

uncertainty modelled with SGS realizations, 

continuous deviation variables 
,

t

sgdev 
, 

,

t

sgdev 
, 

,

t

sodev 
, and 

,

t

sodev 
 are introduced in Equations (9) 

and (10) with their respective penalties 
t

gpc 
, t

gpc 
, 

t

opc 
 and t

opc 
 for managing deviations from ore 

grade and ore tonnage production targets. Also, a 

geological discount rate (dgeo) is applied to the cost 

of deviation to defer the risk of not meeting production 

targets to later periods. 

5.2. SMILP Model Constraints for 

Production Scheduling  

       The related constraints used in controlling the mining 

and processing capacities are stated by Equations (11) 

to (14). These constraints are defined in the form of 

maximum and minimum limits and are controlled by 

the decision variables ,a t

ny  and ,u t

nx . Equation (11) 

and Equation (12) define the maximum and minimum 

mining capacity constraints while Equation (13) and 

Equation (14)  define the  processing capacity 

constraints. Ore tonnage uncertainty modelled with 

SGS realizations are taken into consideration in 

Equation (15) and (16) introduce the continous  

decision variables  
,

t

sgdev 
 and 

,

t

sgdev 
 which are 

used as buffers to allow grade deviations from the 

target head grade. Penalizing these deviations in the 

objective function (Equations (16) and (17)) ensures 

that both the proportion of ore processed at the plant 

and input grade fed to the mill are as close as possible 

to the required targets. The ore quality blending 

constraints used to control ore bitumen grades and ore 

fines content in the extracted materials for all 

realizations are formulated in Equations (17) to 

Equations (18). 

       
,

,

1

( )
N

a ta t

n n n n n m
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5.3. SMILP Model Dyke Material Constraints 

for Risk-based Waste Management 

Planning 

The presence of grade uncertainty in mineral deposits 

contribute to unsustainable waste management 

planning which may result in major financial liabilities, 

environmental challenges and mine closures by 

regulatory agencies. If grade uncertainty is not 

considered in oil sands mine planning, there may be 

excess waste than the waste management plan can 

handle or an over-design of a waste management 

system to handle less waste than planned. This results 

in lost opportunities in terms of revenue and waste 

management cost. In the proposed SMILP model, grade 

variability in the material extracted should be taken into 

consideration during production scheduling so as to 

avoid under- or over-representation of the proportions 

of materials classified as either ore or waste. By doing 

so, the classified waste materials can be represented 

appropriately in a robust waste management plan to 

minimize environmental impacts and costs.  

The constraints used in controlling the OB, IB, and TCS 

dyke materials requirements and IB dyke material fines 

content targets are modelled with Equations (19) to (26)

. From Equation (8) the constraints for dyke material 

requirements are controlled by the decision variables 

, , ,, ,u t u t u t

n n nl c s . Equations (25)  and (26) are IB dyke 

material fines blending constraints which  controls the 

fines content in the extracted material for dyke 

construction destinations. These constraints control the 

IB dyke material fines to ensure stability of the tailings 

cell dyke walls during construction as per the dyke 

design specifications.  
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5.4.  SMILP Model General Constraints  

The general constraints that is widely used in mine 

optimization problems relates to controlling the 

mining precedence and the logics of the variables 

during optimization. These constraints have been 

formulated and documented in Ben-Awuah and 

Askari-Nasab (2013) as follows:  

a) Vertical mining precedence:  These 

constraints ensure that before the extraction 

of a specific mining block, all the immediate 

predecessor blocks on top must already have 

been extracted so that the mining block is 

accessible. 

b) Horizontal mining precedence: These 

constraints ensure that all the immediate 

predecessor mining blocks in a specified 

horizontal mining direction are extracted 

prior to the extraction of the mining block.  
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c) Variables logics control: These constraints 

control the logics of the mining, processing, 

and dyke material variables with respect to 

their limits and definitions.  

 

6 Case Study: Results and Discussions   

The data set used for this case study is an oil sands 

deposit which consists of 104 exploration drill holes. 

Figure 3 shows a 3D location map of the drill holes 

with bitumen grades.  

 

Figure 3 3D location map of the drill holes with bitumen 

grade distribution 

 
6.1  Statistical Analysis of Oil Sands Data   

In order to start geostatistical modelling, it is 

necessary to perform preliminary statistical analysis 

including compositing, recognizing outliers, 

identifying trends, and data transformation. The drill 

holes contain assay data for bitumen, fines, organic 

rich solids, and water.  Declustering was applied to the 

data set to reduce the effect of clustered samples on 

global statistics. By applying the concept of 

declustering, the histogram and summary statistics are 

adjusted to be representative of the entire volume of 

interest. This is necessary because data collection 

practices in general focuses on portions of the study 

area that are most important. For this research, the 

element of interest is bitumen grades since its 

variability in estimation creates uncertainty which 

potentially impacts the overall net present value of the 

mining project. (Osanloo et al., 2008), (Ramazan and 

Dimitrakopoulos, 2018). 

 
6.2  Spatial Correlation Analysis using 

Variogram 

The measurement of spatial continuity was employed 

so as to understand the correlation between the 

observations of the univariate sample at different 

locations. This analysis is useful to detect the presence 

of general trends in the data. Geostatistical techniques 

as explained by Issaak and Srivastava (1989) were 

used to analyze spatial variability and distribution of 

sample data to estimate parameters at unsampled 

locations. According to Issaak and Srivastava (1989), 

applying geostatistics techniques has three steps: (1) 

assumption of stationarity, (2) spatial modelling of 

sample data, and (3) estimation of variable value at   

unsampled location. The analysis of spatial correlation 

can be undertaken using Geostatistical Software 

Library software also known as GSLIB (Deutsch and 

Journel, 1998).  

The original data set containing bitumen grades were 

transformed to a gaussian space using standard normal 

score transformation applied in geostatistical analyses 

(Deutsch 2002). Transformation of data to normal 

score distribution satisfies the assumption of 

stationarity of data. The transformed normal score 

data is also useful as input data in the stochastic 

gaussian simulation technique. Figure 4 shows the 

histogram and the normal score transform for bitumen 

grades.  

Figure 4 Histogram and transformed normal score for 

bitumen grades 

Variogram analysis, which allows for examination of 

whether the data is correlated with distance, was done 

for ore bitumen grades. Omnidirectional variogram 

for bitumen grades was first computed to identify the 

sill while vertical variograms were used to identify the 

nugget effect. Primary variogram maps were 

calculated to determine the orientation of the major 

axis in the presence of anisotropy. Directional 

experimental variograms were calculated and 

theoretical variogram models were fitted to the 

experimental variograms. The parameters used to 

model the experimental variogram can be seen in 

Table 1. 

 

Table 1 Parameters used for Variogram Modelling 

of Bitumen Grades 

 

An exponential variogram model was fitted to the 

experimental variograms in the horizontal major 
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direction and the horizontal minor direction. Figure 

(5) shows the experimental and fitted variogram 

models in the major and minor directions, and in the 

vertical direction. The general equation for 

exponential variogram model is shown in Equation 

(29). 

 
2

3

( ) 1

h

ah C e
 

 
 

 
   
 
 

                                    (29)       

Where C is the structure variance and a is the 

effective range.

 

Figure 5 Experimental directional variogram (dots) and 

fitted variogram models (solid lines) for bitumen grades 

of ore blocks (distance in meters) 

6.3 Estimation and Simulation 

Using the concept of Block Kriging (Gringarten and 

Deutsch, 2001), Ordinary Kriging grade and variance 

were estimated for each mining block for bitumen and 

fines grades. Figure 6 shows a 2D plot of the OK mean 

and variance estimated for bitumen grades in the case 

study. Due to the smoothing effect of Kriging, the 

standard deviation decreases as compared to the 

sample data. The global average ore bitumen grade 

estimate from OK is 9.22 (%m).   

Figure 6 2D plot of OK mean (left) and OK variance 

(right) estimated for bitumen grades 

 

Subsequently, the results of 20 SGS realizations for 

bitumen grades were obtained after running the 

stochastic sequential gaussian simulation algorithm. 

The results are shown in Figure 7. 

 

Figure 7 Simulated results obtained from SGS  

 

In order to compare and validate the estimated kriging 

results and SGS results, a QQ-plot was created by 

plotting two sets of quantiles against each other. In this 

case, the estimated kriged bitumen grades and 

simulated bitumen grades were compared to the true 

bitumen grade values from the samples. The Q–Q plot 

analysis produced acceptable linear trends (located on 

the 45-degree line) between sample data and 

realizations. This shows good reproduction of sample 

data statistics from the simulation results. On the other 

hand, it can be seen that the Q–Q plot analysis for OK 

estimates deviates from the 45-degree trend line. 

 



 

 
83 

                                    6thUMaTBIC, August 2020 

                                         

Figure 8 Plots of estimated and simulated ore bitumen 

grades against input data (OK, E-type, SGS realizations 

8 and 18) 

6.4 Implementation of the SMILP 

Framework 

This section provides detailed documentation of the 

case study experimental design and implementation 

with the SMILP model framework for an oil sands 

deposit.  In this case study, there were three scenarios 

that were implemented. Scenario 1 is based on the OK 

block model and is used as the base case study. 

Scenario 2 is based on the E-type block model and 

Scenario 3 is based on the SGS realizations block 

models. The SMILP framework is based on the 

application of all generated SGS realizations 

(Scenario 3) so as to consider grade uncertainty in the 

production schedule. The SMILP framework is also 

adjusted and applied in Scenarios 1 and 2 with the 

assumption that they each have one realization. 

Figure 9 shows the implementation scenarios that 

were investigated for this case study. A summarized 

information on the oil sands deposit which includes 

ore and waste materials contained in the ultimate pit 

design is presented in Table 2. The economic 

parameters that were used in the case study for all 

scenarios is shown in Table 3.The minimum and 

maximum limits of material quantity and quality 

requirements for ore bitumen grades, ore fines 

content, IB dyke material fines content, and sand-

fines blends for all scenarios can be seen in Table 4 

for all scenarios. 

The risk parameters considered to minimize 

deviations of ore bitumen grades and ore tonnages 

from the production targets during mine production 

scheduling can be seen in Table 5.Error! Reference 

source not found. For Scenarios 1 and 2, there was 

no consideration of uncertainty. The OK model in 

Scenario 1 is said to produce the best linear unbiased 

estimate (Isaaks and Srivastava, 1989; Sinclair and 

Blackwell, 2002), while the E-type model in Scenario 

2 comprises of the average simulated block model 

from all the realizations. Theoretically, the E- type 

model is identical to the kriging results in Gaussian 

space (Journel and Huijbregts, 1981). In Scenario 3, 

using SGS realizations provide a set of production 

scenarios that captures and assesses the uncertainty in 

the final pit outline, material handling in the 

production schedule, the overall net present value of 

the mining project and ore bitumen head grade.  

 

Figure 9 Implementation scenarios of case study 

 

Table 2 Block model data of oil sands deposit for 

all scenarios 

 

 

   Table 3 Economic parameters for all scenarios  

 

 

 
Parameter (Unit)              Scenarios (OK/E-type/SMILP) 

Total block tonnage (Mt)  318.84 

Total ore tonnages (Mt) 145.56 /165.94 / 150.26 

Total OB dyke material tonnage 

(Mt) 
39.50 

Total IB dyke material tonnage 

(Mt) 
125.16 /104.79 /120.46 

  Total TCS dyke material 

tonnage (Mt) 
100.41 /111.13 /82.04 

Block dimensions (m) 50 x 50 x 15 

Number of blocks (#) 4476 

Number of benches 6 

Mine life (Years) 10 

 Parameter (Unit)  Value 

Mining cost ($/tonne) 4.60 

Processing cost ($/tonne) 5.03 

Selling price ($/bitumen %mass) 4.50 

Economic discount rate (%) 10 

OB dyke material cost ($/tonne) 1.38 

IB dyke material cost ($/tonne) 1.38 

 TCS dyke material cost ($/tonne) 0.92 
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Table 4 Operational material capacities and     

quality requirements for all scenarios 

 
 

Table 5 Risk parameters for all scenarios 

 

6.5 Analysis of the Optimization Results  

The optimal production schedules results were 

obtained for the OK model, E-type model and SMILP 

model. All three models together with the SGS 

realizations were compared based on the following: 

cash flow, ore tonnage, waste tonnage and average 

bitumen grade. In this case study, three sets of 

experiments were conducted. The first set of 

experiments involves the application of the 

mathematical programming framework for the OK 

model (Scenario 1), E-type model (Scenario 2), 

SMILP model (Scenario 3) and each of the 20 SGS 

realizations. The second set of experiments consist of 

a comparative study on risk analysis for the given case 

study and, the third set of experiments include a 

sensitivity analysis of the SGS model based on the 

geological discount rate (GDR) parameter 

(Dimitrakopoulos and Ramazan, 2008). Table 6 

shows a summary of results obtained from the first set 

of experiments.  

 

Table 6 Summary of results for OK, E-type 

and SGS models 

 

 

6.5.1 Comparative study: OK, E-type, SMILP 

and SGS Realizations Models 

Figure 10 shows comparison of the cash flows from 

all the models and realizations. It can be seen that the 

cash flow from the OK model drops significantly 

from year 4 for the remaining periods. The cash flow 

of the SMILP model and the E-type model are higher 

and remain consistent throughout the life of mine 

until the ore material becomes depleted in year 10 for 

the SMILP model and year 11 for the E-type model. 

The cash flows and NPV generated by the SMILP 

model performs better than that of the E-type model. 

This is because of the penalty function introduced in 

the objective function to minimize the risks of not 

meeting the production targets in the early years of 

production. The NPV generated by the SMILP model 

was 17% better than the OK model and 14% better 

than the E-type model. Figure 11 shows comparisons 

of the ore tonnages sent to the processing plant for all 

the models and realizations. Based on the figure, it is 

observed that the ore tonnages are approximately 

consistent for all the periods with the exception of the 

last year when the available material in the ultimate 

pit becomes depleted for the OK, SMILP and SGS 

 

Parameter (Unit)  
Max       

value 

       Min 

value 

Mining capacity (Mt/year)  32.0 31.4 

Processing capacity (Mt/year)  14.0 10.0 

OB dyke material capacity 

(Mt/year) 
3.8  1.0 

IB dyke material capacity 

(Mt/year) 
4.0 1.0 

TCS dyke material capacity 

(Mt/year) 
8.0 1.0 

Ore bitumen grade (%m) 16.0 7.0 

Ore fines content (%m) 30.0 0.0 

IB dyke material fines content 

(%m) 
50.0 0.0 

Sand-fines ratio (%m) 6.0 0.0 

 

Parameter (Unit)   

 

                              Scenarios 

                  (OK/E-type/SMILP) 

Number of Realizations (#)  0/0/20 

Geological risk discount rate (%) 0/0/20 

Penalty cost of shortage in ore 

production ($/tonne)  
0/0/5 

Penalty cost of excess in ore 

production ($/tonne)  
0/0/10 

Penalty cost of shortage in ore grade 

(mill) ($/%m)  
0/0/2.5 

Penalty cost of excess in ore grade 

(mill) ($/%m) 
0/0/1.5 
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realizations models. The E-type model indicates that 

more ore tonnes are being sent to the plant. This is due 

to the fact that the E-type model is based on the 

average block values of all the realizations which is 

sensitive to extreme values. Thus, based on the 

regulatory ore cutoff grade of 7 %m bitumen, 

majority of the bitumen grade in each mining block 

that falls close to the cutoff grade will tend to be 

classified as ore after averaging which may not be 

accurate. This results in over estimation of the ore 

tonnages but with lower average bitumen grades.  

 

Figure 10 Ore tonnage comparisons  

 

Figure 11 shows a comparison of the average ore 

bitumen grade that is fed to the mill for the three 

models and realizations. Based on the figure, a greater 

steady decline of bitumen grade could be seen for the 

OK model which impacts the NPV as compared to the 

E-type model and the SMILP model. The SMILP 

model generates a balanced ore bitumen grade 

schedule as compared to the other models throughout 

the mine life. This is as a result of the penalty function 

and geological discount rate (GDR) parameter that 

was introduced in the SMILP objective function to 

control the risk of not meeting the production targets 

by minimizing deviations in the early production years 

and deferring risk to later periods until when more 

geological information becomes available 

 

Figure 11 Ore bitumen grade comparisons 

Figure 12 shows the waste tonnage comparisons that 

were generated as part of the production scheduling 

optimization. Based on the results, the E-type model 

generated the most total waste tonnage of 167.00 Mt 

as compared to the OK and SMILP models that 

generated 147.59 Mt and 145.81 Mt respectively. The 

OK and SMILP models seem to generate similar 

waste tonnes. However, by considering grade 

uncertainty in the objective function of the SMILP 

model, the amount of waste tonnes generated is 

minimized and a risk-based waste management plan 

can be implemented. If grade uncertainty is not 

considered in oil sands mine planning, there may be 

excess waste than the waste management plan can 

handle or an over-design of a waste management 

system to handle less waste than planned.   

 

Figure 12 Waste tonnage comparisons 

 

6.5.2  Comparative study: risk analysis 

In addition to the production scheduling results, the 

risk profiles for cash flows, ore tonnages and ore 

bitumen grades were evaluated as shown in Figure 13, 

Figure 14 and Figure 15. Risk profiles are calculated 

using the equally probable representations of the 

orebody from the 20 SGS realizations. The spread of 

bitumen grades, ore tonnages and cash flows in each 

realization provides an indication of uncertainty in 

each period according to the generated schedules.  

The risk analysis was conducted by comparing the 

production schedules of bitumen grades, cash flows 

and ore tonnages for the tenth, fiftieth and ninetieth 

percentiles (P10, P50, and P90) with that of the three 

models. The results indicate that the SMILP model is 

similar to the P50 risk profile and therefore 

demonstrates that there is a strong indication of no 

over estimation or under estimation of the simulated 

NPV, cash flows, bitumen grades and ore tonnages. 

The scheduled results of the OK model fall below the 

P10 risk profile indicating that if the mine planner 
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follows the OK model, there will be missed 

opportunities from following a mine plan that does 

not integrate grade uncertainty and is overly 

conservative.   

 

Figure 13 Risk profile for cash flow  

 

Figure 14 Risk profile for ore tonnage processed  

 

Figure 15 Risk profile for ore bitumen grade 

 

6.5.3 Sensitivity assessment of geological 

discount rate (GDR) parameter 

The third set of experiments were performed to 

conduct a sensitivity assessment of the geological 

discount rate (GDR) parameter used in the SMILP 

model. The objective of this experiment is to observe 

how the NPV reacts to changes in the GDR 

parameter. The GDR parameter is associated with the 

risk in the mine production schedule. A lower GDR 

value implies a higher risk as it is implemented as an 

inverse relation in the objective function. To conduct 

this assessment, various SMILP runs were undertaken 

while varying the GDR parameter and keeping all 

other economic and technical parameters unchanged. 

The results in Figure 16 shows that as the GDR 

parameter increases, the NPV becomes better. This 

indicates that higher risk yields lower NPV and vice 

versa.  The results also show that at GDR parameter 

of 30%, the optimal NPV value is attained for this 

case study.  

Figure 16 Sensitivity analysis of GDR parameter 

 

7 Conclusions and Recommendations  

This research has presented a Stochastic Mixed 

Integer Linear Programming (SMILP) framework to 

incorporate grade uncertainty into the optimization of 

integrated oil sands mine planning and waste 

management. Instead of using one estimated orebody 

model (OK model) as input to optimize the 

production schedule, a set of equally probable 

orebody realizations (20 SGS realizations) and a 

SMILP framework are deployed to incorporate grade 

uncertainty and generate a risk-based production 

schedule. 

The stochastic optimization formulation was 

implemented in a Matlab/CPLEX environment. Three 

scenarios and three sets of experiments were 

conducted. The first set of experiments involve the 

application of the stochastic mathematical 

programming framework for the OK model (Scenario 

1), E-type model (Scenario 2), SMILP model 

(Scenario 3) and each of the 20 SGS realizations. The 

second set of experiments consist of a comparative 

study on risk analysis for the given case study and, the 

third set of experiments include a sensitivity analysis 

of the SMILP model based on the geological discount 

rate (GDR) parameter. Based on the comparisons 
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from the experiments, the proposed SMILP model 

successfully integrates grade uncertainty and 

generates a risk-based production schedule with 

stable cash flow as compared to the OK and E-type 

models. The OK model and E-type model do not asses 

the effect of grade uncertainty which impacts the 

NPV of the mining project. The SMILP model 

accounts for geological risk by deferring ore with 

highly uncertain grades to later years when more 

geological information becomes available. By 

deferring production risk to later years, the problem 

of not reaching production targets in the earlier years 

is minimized thus creating a smoother and stable 

production schedule. The results in this case study 

demonstrates that the SMILP model generates 

potential improvement in terms of the expected NPV 

of 17% compared to the OK model and 14% 

compared to the E-type model. The SMILP model 

also controls the geological risk compared to 

traditional approaches such as Ordinary Kriging and 

E-type that is based on single estimated orebody 

models. Sequential Gaussian Simulation should 

always be considered in mine planning so as to 

minimize the risk of not meeting production targets 

set by mine management.  
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